右手法则和左手法则讲解电动机的定义和原理
电动机和发电机都是转换电能和机械功的装置。使用电能执行机械功的设备称为电动机,将电能转换为电能的设备称为发电机。它是电动机还是发电机取决于电流是在磁场中流过导体还是在磁场中移动。电磁力产生的基本原理可以用弗莱明的左右定律来解释。
图1显示了如何通过使电流在磁场中流过导体来产生力。力量的产生可以用弗莱明的左手定律来解释。如果磁场强度为B(T),电流大小为i(A),并且导体在磁场中的长度为l(m),则洛伦兹力F = Bli(N)由麦克斯韦方程计算。会发生。
图1:根据弗莱明左手定则生成力
图2说明了根据弗莱明右手法则通过在磁场中移动导体来产生电压的原理。如果导体的移动速度为v(m / s),则生成的电压e = Blv(V)。图2中的磁场由永磁体制成,但是也可以通过使电流通过绕组的线圈产生磁场。那些产生磁场的磁体(例如永磁体和线圈)称为场磁体。
图2:根据弗莱明右手定则产生电压
电动机通过流过励磁线圈和导体的电流的相互作用产生旋转力。电机发展的早期(约1830年)面临的挑战是如何将产生的力转换为电机的旋转运动。由于磁场产生的磁通方向是恒定的,因此有必要通过旋转电流流过的导体来切换电流方向。使之成为可能的本发明是电刷和换向器机构。结果,实现了能够连续旋转的DC电动机。当时,直流电是主流,因此创建了由DC(直流)电源驱动的电动机。
后来随着交流(AC)发电机的商业化,还开发了以三相交流电为电源的电动机。在交流电动机中,三相交流电被提供给作为磁场线圈的定子绕组。由三相交流电产生的磁场的合成与交流电频率同步旋转。因此,与直流电动机不同,交流电动机自动切换电流方向,不需要特殊的机构。交流电动机的定子绕组产生的磁场称为旋转磁场,当频率为f且极数为P时,磁场以N = 120 f / P(rpm)的转速旋转。
大多数当前的电动机,例如DC(直流)电动机和AC(交流)电动机,都按照弗莱明左手定则及其所产生的洛伦兹力(Bli法则)运行。然而,在电动机开发的早期,也将利用电磁体的吸引力的方法作为电磁力产生的原理。图3示出了通过电磁力吸引产生力的原理。
图3:磁阻力原理
当电流通过线圈状磁体时,磁体被磁化,并且在附近的磁体中被磁化,从而在磁轴重合的方向上产生力。该力的作用是使间隙之间的磁阻最小化,称为磁阻力。利用该力的磁阻电动机的缺点在于,由于磁阻力随着位移而变化,因此难以获得恒定的旋转力。为了克服这些缺点,需要高级控制,因此,与直流电动机和交流电动机相比,磁阻电动机的使用速度有所降低。
图1显示了如何通过使电流在磁场中流过导体来产生力。力量的产生可以用弗莱明的左手定律来解释。如果磁场强度为B(T),电流大小为i(A),并且导体在磁场中的长度为l(m),则洛伦兹力F = Bli(N)由麦克斯韦方程计算。会发生。
图1:根据弗莱明左手定则生成力
图2说明了根据弗莱明右手法则通过在磁场中移动导体来产生电压的原理。如果导体的移动速度为v(m / s),则生成的电压e = Blv(V)。图2中的磁场由永磁体制成,但是也可以通过使电流通过绕组的线圈产生磁场。那些产生磁场的磁体(例如永磁体和线圈)称为场磁体。
图2:根据弗莱明右手定则产生电压
电动机通过流过励磁线圈和导体的电流的相互作用产生旋转力。电机发展的早期(约1830年)面临的挑战是如何将产生的力转换为电机的旋转运动。由于磁场产生的磁通方向是恒定的,因此有必要通过旋转电流流过的导体来切换电流方向。使之成为可能的本发明是电刷和换向器机构。结果,实现了能够连续旋转的DC电动机。当时,直流电是主流,因此创建了由DC(直流)电源驱动的电动机。
后来随着交流(AC)发电机的商业化,还开发了以三相交流电为电源的电动机。在交流电动机中,三相交流电被提供给作为磁场线圈的定子绕组。由三相交流电产生的磁场的合成与交流电频率同步旋转。因此,与直流电动机不同,交流电动机自动切换电流方向,不需要特殊的机构。交流电动机的定子绕组产生的磁场称为旋转磁场,当频率为f且极数为P时,磁场以N = 120 f / P(rpm)的转速旋转。
大多数当前的电动机,例如DC(直流)电动机和AC(交流)电动机,都按照弗莱明左手定则及其所产生的洛伦兹力(Bli法则)运行。然而,在电动机开发的早期,也将利用电磁体的吸引力的方法作为电磁力产生的原理。图3示出了通过电磁力吸引产生力的原理。
图3:磁阻力原理
当电流通过线圈状磁体时,磁体被磁化,并且在附近的磁体中被磁化,从而在磁轴重合的方向上产生力。该力的作用是使间隙之间的磁阻最小化,称为磁阻力。利用该力的磁阻电动机的缺点在于,由于磁阻力随着位移而变化,因此难以获得恒定的旋转力。为了克服这些缺点,需要高级控制,因此,与直流电动机和交流电动机相比,磁阻电动机的使用速度有所降低。
免责声明:文章来源于网络或个人发表,如有侵权请联系删除(13802804900)